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Abstract
Using the geometric engineering method of 4D N = 2 quiver gauge theories
and results on the classification of Kac–Moody (KM) algebras, we show by
explicit examples that there exist three sectors of N = 2 infrared CFT4s.
Since the geometric engineering of these CFT4s involves type II strings on K3
fibred CY3 singularities, we conjecture the existence of three kinds of singular
complex surfaces containing, in addition to the two standard classes, a third
indefinite set. To illustrate this hypothesis, we give explicit examples of K3
surfaces with H4

3 and E10 hyperbolic singularities. We also derive a hierarchy
of indefinite complex algebraic geometries based on affine Ar and T(p,q,r)

algebras going beyond the hyperbolic subset. Such hierarchical surfaces have
a remarkable signature that is manifested by the presence of poles.

PACS numbers: 02.20.Sv, 03.50.−z, 11.10.Kk, 11.30.Pb

1. Introduction

Recently D-dimensional supersymmetric conformal field theories (CFTD) have been subject
to an intensive interest in connection with superstring compactifications on Calabi–Yau (CY)
manifolds [1–4] and AdS/CFT correspondence [5, 6]. An important class of these super CFTs
corresponds to those embedded in type II string compactifications on K3 fibred CY threefolds
(CY3) with ADE singularities. These theories admit a very nice geometric engineering
[7, 8] in terms of quiver diagrams and are classified into two categories according to the
type of K3 singularities: (a) N = 2 CFT4s with gauge group G = ∏

i SU(sin) and bi-
fundamental matters. This category of scale invariant field models is classified by affine
ÂDE Lie algebras. They have vanishing individual beta function bi known to be given by
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bi = 1
12

(
44ni − ∑

j

[
8a4

ij + 2a6
ij

]
nj

)
with a4

ij and a6
ij being the numbers of Weyl fermions and

scalars respectively [2, 9]. In N = 2 affine CFT4s, this beta function relation can be put in
the form bi = 11

6 K(0)
ij nj and its vanishing condition Kij nj = 0 can be solved in terms of the

usual Dynkin integer weights si(Kij sj = 0) as follows,

K(0)
ij nj = nK(0)

ij sj = 0, (1)

where K(0)
ij is the affine ÂDE Cartan matrix. The extra upper index on K(0)

ij is introduced
for later use. (b) N = 2 CFT4s, based on finite ADE singularities; with gauge group G =∏

i SU(ni) and matters in both fundamental ni and bi-fundamental (ni ,nj ) representations of
G. In this case, the beta function bi may be put in the form bi = 11

6

(
K(+)

ij nj − mi

)
and so its

vanishing condition is equivalent to

K(+)
ij nj = +mi, (2)

where now K(+)
ij is the finite ADE Cartan matrix and where mi is interpreted as the number

of fundamental matters. Here also, we have introduced the extra upper index on K(+)
ij to

distinguish it from K(0)
ij of equation (1). Note that equation (2) may be thought of as a special

deformation of equation (1), which in field-theoretic language consists in adding a definite
number of Weyl fermions and scalars; that is, more supersymmetric fundamental matters.
This interpretation is not a new idea in QFTd ; something close to that was already used
in the study of deformations of the 2D conformal structure; in particular in the analysis of
deformations of 2D Toda field theories. In the present 4D case, much information on the
deformation of equations (1), (2) and vice versa may be read directly on the explicit relation
bi = 1

12 (44ni − ϑi) with ϑi = ∑
j

[
8a4

ij + 2a6
ij

]
nj . Starting from bi > 0, that is 44ni > ϑi ,

one can recover conformal invariance by adding appropriate amount of fundamental matter
to the quiver gauge system; this corresponds to increasing ϑi until the conformal point is
reached. Pushing this reasoning further by remarking that as one may add matter, one may
also integrate it out. This corresponds to starting from bi < 0, i.e. 44ni < ϑi and integrating
out some amount of matter which decreases ϑi . The resulting beta function can be put in the
form 11

6

(
K(−)

ij nj + mi

)
; so one ends with the following conformal invariant dual formula to

equation (2),

K(−)
ij nj = −mi, i = 1, . . . . (3)

To give an interpretation to K(−)
ij matrix, note that the above three equations show that they are

really very remarkable relations in the sense that they may be put altogether into a condensed
form as follows:

K(q)

ij nj = qmi, q = +1, 0,−1. (4)

But this formula is very well known in the literature on KM algebras as it is just the statement of
the theorem of their classification which says that the three q = +1, 0,−1 sectors correspond
respectively to finite, affine and indefinite classes of KM algebras [10].

In this paper, we develop the study for the particular class of indefinite N = 2 CFT4s.
We will show that this class shares all the basic features we know about finite and affine
N = 2 QFT4s and their IR CFT4 limits embedded in type II string on CY3 with singular
K3 fibration. As a consequence of this classification, we conjecture the existence of a third
class of local K3s with indefinite singularities; the two others are the known ADE ones. As
we usually do in finite and affine standard cases, we will focus our attention here also on the
simply laced subset of local K3s classified by indefinite KM algebras and the corresponding
mirror geometries. More precisely, we study the special case of N = 2 CFT4 models based
on simply laced hyperbolic symmetries as well as particular extensions.
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Figure 1. A typical trivalent vertex in mirror geometry. It involves a central node and four attached
ones; two of them are of Dynkin type and the others are required by CY condition. They deal with
fundamental matters.

The presentation of this paper is as follows: in section 2, we review briefly the computation
of the general expression of the beta function ofN = 2 QFT4s using the geometric engineering
method. Then, we show that the solution for N = 2 CFT4 scale invariance condition coincides
exactly with the Lie algebraic classification equation (4). In sections 3 and 4, we establish a
classification theorem for N = 2 CFT4s and give two explicit illustrating examples. These
concern local K3 with hyperbolic H4

3 and E10 singularities. In section 5, we give a conclusion
and generalizations.

2. Beta function in N = 2 quiver QFT4

A nice way to compute the beta function of the N = 2 quiver gauge theories is to use
the geometric engineering method of QFT4s embedded in type II strings on CY3 with ADE
singularities [7]. This method involves toric representation of CY3, mirror symmetry and
techniques of algebraic geometry; in particular trivalent geometry, main lines of which we
review here. Details can be found in [7, 8]. To illustrate the idea of the method in a
comprehensive way, we start by considering the case of a unique trivalent vertex; then we give
the results for chains of trivalent vertices.

Case of one trivalent vertex. In type IIA string on CY3, a typical trivalent vertex of the toric
representation of CY3 is described by the three-dimensional vectors Vi ,

V0 = (0, 0, 0), V1 = (1, 0, 0), V2 = (0, 1, 0),

V3 = (0, 0, 1), V4 = (1, 1, 1)
(5)

satisfying the following toric geometry relation
∑4

i=0 qiVi = −2V0 + V1 + V2 + V3 − V4 = 0.
The vector charge (qi) = (−2, 1, 1, 1,−1) is known as the Mori vector and the sum of
its qi components is zero as required by the CY condition. In type IIB mirror geometry,
the (V0, V1, V2, V3, V4) vertices are represented by complex variables (u0, u1, u2, u3, u4)

constrained as
∏

i u
qi

i = 1 and solved by (1, x, y, z, xyz) (see figure 1). In terms of these
variables, the algebraic geometry equation describing mirror geometry is given by the following
complex surface, P(X∗) = e0 + a0x + b0y + (c0 − d0xy)z, where a0, b0, c0, d0 and e0 are
non-zero complex moduli. Upon eliminating the z variable by using the equation of motion
∂P (X∗)

∂z
= 0, the above trivalent geometry reduces exactly to

P(X∗) = a0x + e0 +
b0c0

d0

1

x
, (6)
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Figure 2. This graph describes a typical vertex one has in geometric engineering of N = 2 QFT4.
SU(1 + l) gauge and flavour symmetries are fibred over the five black nodes. Flavour symmetries
require large base volume.

which is nothing but the mirror of the su(2) singularity of local K3 surface. To get the equation
of the CY3, one promotes the coefficients a0, b0, c0, d0 and e0 to holomorphic polynomials on
complex plane as

e =
nr∑

i=0

eiζ
i, a =

nr−1∑
i=0

aiζ
i, b =

nr+1∑
i=0

biζ
i,

c =
mr∑
i=0

ciζ
i, d =

m′
r∑

i=0

diζ
i .

(7)

Note that the functions a, b and e encode the fibrations of SU(1 + nr−1) × SU(1 + nr) ×
SU(1 + nr+1) gauge symmetry while c and d are associated with flavour symmetries of the
underlying N = 2 QFT4 engineered over the nodes of the trivalent vertex. The nature of
the flavour group will be discussed later on; all what we know about it is that for m′

r = 0, the
group is SU(1 + mr) but this corresponds to a finite class of N = 2 CFT4s. Note also that in
the geometric engineering method, the SU(1 + nr) and SU(1 + nr±1) gauge symmetries are
fibred over V0, V1 and V2. However the two kinds of ‘matters’ mr and m′

r are fibred over the
nodes V3 and V4 respectively (see figure 2). Note finally that all of the holomorphic functions
a, b, c, d and e are not independent; one can usually fix one of them. We will see that this
freedom turns into a condition on mr and m′

r ; but for the moment, we keep all these moduli
free and make a comment later on.

Infrared N = 2 QFT4 limit. To get the various N = 2 CFT4s embedded in type IIA strings
on CY3, we have to study the infrared field theory limit one gets from mirror geometry
equation (6) and look for the scaling properties of the gauge coupling constant moduli. We
will do this explicitly for the case of the trivalent vertex and then give the general result for
the chain. To that purpose, we proceed in three steps: first determine the behaviour of the
complex moduli fi appearing in expansion equation (7) under a shift of ζ by 1/ε with ε → 0.
Doing this and requiring that equations (7) should be preserved, which is still staying in the
singularity described by equations (7), we get the following,

el ∼ εl−nr , al ∼ εl−nr−1 , bl ∼ εl−nr+1 , cl ∼ εl−mr , dl ∼ εl−m′
r . (8)
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Second, compute the scaling behaviour of the gauge coupling constant moduli Z(g) under the
shift ζ ′ = ζ + 1/ε. Putting equations (8) back into the explicit expression of Z(g) namely
Z(g) = a0b0c0

e2
0d0

, we get the following behaviour Z(gr ) ∼ ε−br with br given by

br = 11
6 [2nr − nr−1 − nr+1 − (mr − m′

r )]. (9)

This relation tells us: (i) br is the beta function for the gauge group factor SU(1 + nr). (ii) br

depends on m∗
i = mr − m′

r ; it is invariant under global shifts of mr and m′
r , a property which

reflects the arbitrariness we have referred to above. Introducing the following notation sing
(m∗

i ) = q with q = +1, 0,−1 respectively associated with the intervals mr > m′
r , mr = m′

r

and mr < m′
r , we can rewrite equation (9) as K(q)

ij nj − q|m∗
i | (see also equation (4)). Finally

taking the limit ε → 0, finiteness of Z(g) requires then that the field theory limit should be
asymptotically free; that is br � 0. Upper bound br = 0 corresponds to the scale invariance
we are interested in here.

Conformal invariance phases. From equation (9) it is not difficult to recognize the three
classes of solutions for K(q)

ij nj = qm∗
i : (i) mr − m′

r = 0 and nr = nr−1 = nr+1 = n;

this corresponds to a generic vertex of ŜU(k) affine N = 2 conformal CFT4 with SU(n)3

gauge symmetry. Extension to the other D̂E geometries is straightforward. (ii) m′
r = 0,

but the other integers may be taken as nr = αn; nr−1 = βn, nr+1 = γ n,mr = δn

with α, β, γ, δ ∈ nZ+ constrained as 2α = β + γ + δ. As an example, one may take
them as mr = nr−1 = nr+1 = 2n and nr = 3n; this corresponds to a gauge symmetry
SU(3n) × SU(2n)2 and an SU(2n) flavour symmetry engineered on the middle vertex of the
SU(4) finite Dynkin diagrams. This solution is also valid for mr − m′

r > 0; all one has to
do is to substitute the expression of mr of the above solution by m∗

r . (iii) For the remarkable
case mr = 0; that is m∗

r < 0, conformal invariance requires 2nr − nr−1 − nr+1 + m′
r = 0

and is solved as nr = αn; nr−1 = βn, nr+1 = γ n,m′
r = δ′n with α, β, γ, δ′ ∈ nZ+ satisfying

2α + δ′ = β + γ . As an example, one may take them as m′
r = nr−1 = nr+1 = 2n and

nr = n. Note that solutions for conformal invariance may have m′
r > nr as one sees on

the above particular solution. This property constitutes one of the arguments we will use to
conjecture the flavour symmetry SU(qm∗

r ); it recovers the known results as particular cases.
Naturally the q = −1 sector corresponds to a new class of solutions. In this regard we will
show that this class is linked with simply laced indefinite KM algebras. To do so we need
however more than one trivalent vertex since simply laced indefinite Lie algebras have at least
a rank four and this corresponds to the overextension of affine Â2.

Chains of trivalent vertices. To get the generalization of the above results, it is enough to
think about the previous vertices as a generic trivalent vertex of a linear chain of N trivalent
vertices, that is

V0 → V 0
α , V3 → V +

α , V4 → V −
α , V1 → V 0

α−1, V 0
2 → V 0

α+1, (10)

where α ∈ {1, . . . , N}. The intersections between V 0
α and V 0

α±1 are specified by some integers
qi

α generally inspired from the Cartan matrix of the KM algebra one is interested in. In this
generic case, the data of the toric polytope are fixed by

∑
α�0

(
qi

αV 0
α + V +

i − V −
i

) = 0 and∑i
α qi

α = 0. Note that the ± upper indices carried by the V ±
i vertices refer to the fourth +1

and five −1 entries of the Mori vector qi
τ = (

qi
α; +1,−1

)
of trivalent vertex. In practice, the

Mori vectors qi
αs form a N × (N + s) rectangular matrix whose N × N square sub-matrix

qi
j is minus the generalized Cartan matrix K(q)

ij . For the example of affine AN−1, the Mori
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charges read as qi
α = 2δi

α − δi−1
α − δi+1

α with the usual periodicity of affine ŜU(n). The
remaining N × s part of qi

α is fixed by the CY condition
∑i

α qα = 0 and the corresponding
vertices are interpreted as dealing with non-compact two-dimensional divisors defining the
singular space on which singularities lie. In mirror geometry where xα−1, xα, xα+1, yα and
xα−1xα+1yα

y2
α

are the variables associated with the vertices (10), algebraic equation for a generic

vertex extends as aα−1xα−1 + aαxα + aα+1xα+1 + cαyα + dα
xα−1xα+1yα

x2
α

= 0 where aα, cα and
dα are complex moduli. Summing over the vertices and setting yα = xαzα , one gets
P(X∗) = a0x0 +

∑
α�1

(
aαxα + cαxαzα + dα

xα−1xα+1zα

xα

)
. Eliminating the variable zα as we

have done for equation (6), we obtain

P(X∗) =
∑
α�0

xαaα(w)
∏
β�1

(
cβ(w)

dβ(w)

)α−β

. (11)

From this relation, one gets behaviour Z(gr ) ∼ ε−br with br given by

b(q)
r = 11

6 [2nr − nr−1 − nr+1 − q|m∗
r |], r = 1, . . . . (12)

3. Classification theorem of N = 2 CFT4s

Let Gq be some given simply laced Lie algebra of rank rq = rank(Gq) and Cartan matrix
K(q), corank(K(q)) � 1 and let q = +1, 0 and −1 be an integer which refers respectively to
the three possible sectors of Gq that are of finite, affine and indefinite types. Then the previous
results on N = 2 quiver gauge CFT4s can be stated as a theorem to which we shall refer
hereafter as the classification theorem of N = 2 CFT4s. As these supersymmetric gauge
theories are special limits of underlying 4D massive field theories (QFT4), we will state this
theorem in a more general way.

Theorem. For any quiver graph 
(Gq) of trivalent vertices with a topology-type Dynkin
diagram of the simply laced (finite, affine and indefinite) Lie algebras Gq , there corresponds:

(a) A N = 2 quiver gauge QFT4s which is built as usual by extending the geometric
engineering method to include indefinite type Dynkin diagrams. They may be denoted as
QFT(q)

4 .

(b) The quiver gauge group of theseN = 2 QFT(q)

4 s is
∏rq

i=1 SU(ni) and the flavour symmetry
encoding fundamental matters read as

∏rq
i=1 SU(qm∗

i ). Here, the positive integer |m∗
i |

is the effective number of fundamental matters that contribute to the beta function; it
depends on the absolute value of the difference of mi and m′

i .
(c) The br functions of the SU(ni) gauge symmetries of these N = 2 quiver QFT4s read as,

b(q)
r = 11

6

(
K(q)

rs ns − q|m∗
r |

)
, r = 1, 2, . . . , rq (13)

where q refers to the three above-mentioned sectors.
(d) In the infrared limit of N = 2 gauge quiver QFT4s where b

(q)
r −→ 0, these theories flow

to three classes of 4D N = 2 quiver conformal field theories. The flows are in one-to-one
correspondence with the three sectors of Gqs. As such N = 2 CFT4s are classified as

QFT(q)

4 :

(i) Finite ADEN = 2 CFT+
4s for which the vanishing of the beta function leads to

K(+)
rs ns = |m∗

r |.
(ii) Affine ADEN = 2 quiver CFT0

4s governed by K(0)
rs ns = 0 with one-dimensional

corank
(
K(0)

rs

)
.
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(iii) Indefinite N = 2 quiver CFT−
4 s. They are associated with the class K(−)

rs ns = −|m∗
r |

where now K(−)
rs is an indefinite Cartan matrix.

To prove this theorem, note that the first three properties follow naturally from the
algebraic geometry analysis of the N = 2 quiver QFT4s embedded in type IIA string on CY3
[7, 8] and references therein. The fourth property (d) of this theorem can be linked to the
Vinberg–Kac–Moody basic theorem on the classification of Lie algebras which we recall here
below. Property (d) follows from it by setting ui = ni and vi = |m∗

r |.

Vinberg–Kac–Moody theorem. A generalized indecomposable Cartan matrix K obeys one
and only one of the following three statements: (i) Finite type (det K > 0): there exists a real
positive definite vector u (ui > 0; i = 1, 2, . . .) such that Kij uj = vj > 0. (ii) Affine type,
corank (K) = 1, det K = 0: there exists a unique, up to a multiplicative factor, positive integer
definite vector u (ui > 0; i = 1, 2, . . .) such that Kij uj = 0. (iii) Indefinite type (det K � 0),
corank (K) �= 1: there exists a real positive definite vector u (ui > 0; i = 1, 2, . . .) such that
Kij uj = −vi < 0.

All the equations appearing in this theorem combine together to give equation (4). As a
consequence of this classification of N = 2 CFT(q)

4 s, our theorem may also be viewed as a
classification of possible K3 singularities. We have then the following.

Corollary. From the property (d) of our classification theorem, we conjecture the existence
of indefinite singularities for K3 fibred CY threefolds that are characterized by simply laced
indefinite Lie algebras. With this hypothesis, we have: (α) finite ADE singularities; (β) affine
ÂDE singularities; (γ ) indefinite singularities.

Note that the above two first singular K3 surfaces are well common in type II strings on
CY3. However the third one is a new class which to our knowledge has not been studied
before. It is dictated from N = 2 field-theoretic analysis of N = 2 CFT(q)

4 possible solutions.
In [11], we have made a general analysis of such kind of singularities; here we give explicit
illustrating examples. They concern the overextension of affine Â2 and the overextension of
Ê8 respectively denoted as H 3

4 and E10.

4. Two examples of hyperbolic singularities

We begin by recalling that the mirror geometry of type IIA string on CY3 (X3) with affine
ÂDE singularities is conveniently described in algebraic geometry. A typical equation of
such geometry is P(X∗

3) = ∑
α aαyα , where X∗

3 is the mirror of X3 and where aα = aα(w)

are complex moduli with expansion similar to those of equation (7), (see also [7]). In this
relation, the yα complex variables are constrained as,

n∏
j=1

y
qi

j

j =
n+4∏

α=n+1

y
−qi

α
α , (14)

where qi
j is minus the Cartan matrix Kij of the corresponding Lie algebra and yα , with

n < α < n + 5, are four extra complex variables that are just the monomials appearing in
the elliptic curve E = y2 + x3 + z6 + µxyz = 0 on which shrinks the affine ADE singularity.
Therefore, we have,

yn+1 = y2, yn+2 = x3, yn+3 = z6, yn+4 = xyz, (15)

where (y, x, z) are the homogeneous coordinates of the weighted projective space
WP2(3, 2, 1). The remaining n complex variables yi definitive the ÂDE geometry are also
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solved in terms of the previous y, x and z variables. Such solutions depend on the qi
j and qi

α

integer charges forming altogether a n × (n + 4) rectangular matrix as

Qi
α = (

qi
j , qi

n+1, qi
n+2, qi

n+3, qi
n+4

)
. (16)

The resulting two-dimensional geometry y2 + x3 + z6 + µ0xyz +
∑n

i=1 aiyi = 0 has been
studied extensively in the literature for both trivalent and affine geometries. But here we are
claiming that such analysis applies as well for the indefinite sector of Lie algebras and deals
with the un-explored class of indefinite CFT4s. As the best way to justify our claim is to give
examples, we will start by recalling some useful features on affine geometries and then study
the indefinite case. Before note that the parameter µ appearing in the algebraic geometry
equation of the elliptic curve E(µ) is its complex structure. It is fixed to a constant µ0 in the
case of affine ADE geometries; but varies in the case indefinite singularities we are interested
in here. More precisely, we will see that in the case of simply laced hyperbolic geometries, the
parameter µ has to vary on a complex plane parametrized by w; i.e. µ = µ(w). Under this
variation, the initial curve E(µ0) is now promoted to a complex surface E[µ(w)] which, by
the way, is nothing but the elliptic fibration of K3 y2 +x3 + z6 +µ(w)xyz = 0. Note that, upon
appropriate redefinition of variables, one may rewrite the above algebraic geometry equation
of the elliptic curve into the following equivalent form,

y2 + x3 + ν(t)z′6 + xyz′ = 0 (17)

where now z′ = µ(w)z and ν(t)z′6 = z6. For instance, if we take ν(t) = t−1 = w−6, then
z′ should be z′ = wz and so µ(w) = w. Having these properties in mind, we now turn to
illustrate the building of affine A2 geometry and its hyperbolic overextension.

Affine extension of A2 geometry. In the special case of affine A2 geometry, like all series
of affine ADEs, one starts from the curve E0 = y2 + x3 + z6 + µ0xyz = 0 of WP2(3, 2, 1)

with fixed complex structure and looks for algebraic geometry equation of affine A2 geometry
which reads as

Â2 : y2 + x3 + z6 + µ0xyz + (by1 + cy2 + dy3) = 0. (18)

Here b, c and d are complex moduli which once taken simultaneously to zero the affine A2

geometry shrinks to the elliptic curve. To get the explicit expression of the remaining yi

gauge invariants, one has to specify the toric data for the present affine A2 geometry and too
particularly the qi

j and qi
α charges appearing in equation (14). These read as

Q(Â2) =
−2 1 1 0 0 1 −1

1 −2 1 2 1 0 −3
1 1 −2 0 1 0 −1

 . (19)

The simplest solution one gets for the constraint equations (14) regarding y1, y2 and y3 is
y1 = z3, y2 = xz and y2 = y. However this is not unique as there are infinitely many others
depending on an extra free complex parameter v as shown below,

y1 = z3v, y2 = xzv, y2 = yv, (20)

where v is a homogeneous complex parameter of scaling weight 3 so that (x, y, z, v)

parametrize the WP3(3, 2, 1, 3). Therefore affine A2 geometry reads as

Â2 : y2 + x3 + z6 + µ0xyz + v(bz3 + cxz + dy) = 0. (21)

From these relations, one may also write the vertices and the Mori charges of the corresponding
toric polytope; these may be found in [11]. With relations (18)–(21) at hand, we are now ready
to build our first example of complex surface with an indefinite singularity.
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Overextension of affine A2 geometry. First of all note that the simplest overextension of Â2

LKM algebra is a simply laced indefinite Lie algebra; it is generally denoted as H 4
3 according

to the classification of Wanglai Lie (see also the appendix) and belongs to the so-called
hyperbolic subset. It has the following K

(
H 4

3

)
Cartan matrix,

K
(
H 4

3

) =


−2 1 0 0
1 −2 1 1
0 1 −2 1
0 1 1 −2

 ,

Q
(
H 4

3

) =


−2 1 0 0 0 0 0 1
1 −2 1 1 0 0 0 −1
0 1 −2 1 3 1 0 −4
0 1 1 −2 0 1 0 −1

 .

(22)

Q
(
H 4

3

)
is the matrix of corresponding Mori vectors to be used later. To get the mirror geometry

of a local K3 surface with H 4
3 singularity, we suppose the three following:

(a) As for a Lie algebra structure where H 4
3 appears as an overextension of affine A2, we

consider that hyperbolic H 4
3 geometry is also an extension of affine A2 one. As such we

conjecture that the algebraic geometry equation for H 4
3 surface reads as,

H 4
3 : y2 + x3 + ν(t)z6 + xyz +

(
4∑

i=1

aiyi

)
= 0, (23)

where we have considered an elliptic curve with a varying complex structure. The ais
moduli describe the complex deformation of H 4

3 singularity of the hyperbolic surface and
yis are four gauge invariants that should be solved in terms of the x, y, z and t variables.

(b) Relations (14) used for affine geometries are also valid for the simply laced indefinite Lie
algebra sector. As such we have, for the present example, the following relations defining
the yi gauge invariants for H 4

3 geometry,

8∏
α=1

y
Qi

α
α = 1, i = 1, 2, 3, 4, (24)

where the 4 × 8 rectangular matrix Qi
α defines the four Mori vectors associated with the

hyperbolic H 4
3 geometry equation (22). The property

∑
α Qi

α = 0 reflects just the CY
condition of this special local K3 surface.

(c) Once the ai moduli encoding the complex deformation of hyperbolic H 4
3 surface are

taken simultaneously to zero, the H 4
3 geometry shrinks into equation (17). This means

that equation (15) should be modified as

yn+1 = y2, yn+2 = x3, yn+3 = t−1z6, yn+4 = xyz. (25)

With these tools at hand, one can solve explicitly the remaining four yi gauge invariants in
terms of the complex variables x, y, z and t of WP2(3, 2, 1) × C∗. We find

H 4
3 : y2 + x3 + z6t−1 + xyz + [az6 + btz6 + ctxz4 + dyz3t] = 0. (26)

This is the relation we have been after; it is the mirror of a complex K3 surface with a
hyperbolic H 4

3 singularity. CY3 are obtained as usual by promoting the complex moduli to
polynomials depending on an extra complex variable ζ as ai(ζ ) = ∑ni

j=1 aij ζ
j , where ni stand

for the rank of U(ni) group symmetries of underlying 4D N = 2 quiver gauge theories that are
embedded in type IIA string on the above CY3 with H 4

3 singularity. Before concluding, let us
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give two more comments. (i) As these kinds of unfamiliar CY manifolds look a little unusual,
it is interesting to also write the solutions for the vertices of the toric polytope associated with
the CY3 having a H 4

3 singularity. They read as

yxz ←→ V8 = (0, 0, 0), y2 ←→ V5 = (0, 0,−1), x3 ←→ V6 = (0,−1, 0),

t−1z6 ←→ V7 = (−1, 2, 3), z6 ←→ V1 = (0, 2, 3), tz6 ←→ V2 = (1, 2, 3),

txz4 ←→ V4 = (1, 1, 2), yz3t ←→ V3 = (1, 1, 1).

(27)

Using these expressions and equation (22), it is not difficult to check that these vertices
satisfy the basic toric geometry relations namely

∑8
α=0 qi

α = 0 and
∑8

α=0 qi
αVα = 0. (ii) The

second comment is to discuss the link between affine A2 and hyperbolic H 4
3 geometries.

As noted before, H 4
3 Lie algebra is just an extension of affine A2 and so one expects

that there should be a bridge between the two corresponding geometries. This is what
indeed happens. Starting from the algebraic geometry equation (21) of affine A2, namely
y2 + x3 + ν0z

6 + xyz + (bz3 + cxz + dy)v, and performing the following changes,

ν0 −→ ν(t) = αt−1 + a, v −→ v = tz3, (28)

one gets exactly the hyperbolic H 4
3 mirror geometry of equation (26). Here α and a are

constants.

Hyperbolic E10 surface. To start recall that hyperbolic E10 is the simplest overextension of
affine E8. It is an indefinite KM algebra belonging to the hyperbolic subset, which in Kac
notation, reads as T(p,q,r) with (p, q, r) = (7, 3, 2). Its Cartan matrix K(E10) is symmetric and
has a negative determinant namely det K(E10) = −1. In 4D N = 2 gauge theory embedded
in type IIA string, one may geometrically engineer the E10 hyperbolic QFT4 models and their
infrared CFT(−)

4 limit by considering a local CY3 with an E10 singularity as outlined in the
classification theorem of section 3. Here we would like to derive E10 geometry by using
toric geometry methods and local mirror symmetry. Indeed, the hypothesis of variation of the
complex structure of the elliptic curve allows us to define the hyperbolic E10 geometry as,

E10 : y2 + x3 + ν(t)z6 + xyz +

(
10∑
i=1

aiyi

)
= 0, (29)

where ai are complex moduli and where the ten gauge invariant variables yi are obtained by

solving the constraint equations
∏14

α=1 y
Qi

α
α = 1. Here Qi

α = Qi
α(E10) are the Mori vectors

associated with the hyperbolic E10 geometry. Qi
α is a (10 + 4) × 10 rectangular matrix

whose 10 × 10 square block is minus E10 Cartan matrix. The solution of the constraint

equations
∏14

α=1 y
Qi

α
α = 1 may be obtained without major difficulty as they share features

with the product of the A7, A3 and A2 singularities. Straightforward computations lead to the
following projective exceptional surface,

y2 + x3 + z7t−1 + xyz + a0t
6 + a1t

4x + a2t
2x2 + b1yt4 +

6∑
s=1

cst
6−szs = 0, (30)

where (y, x, z, t) are complex coordinates of WP(3,2,1,1). Note that if the ai, bj and ck complex
moduli are simultaneously taken to zero, one ends with a K3 surface with a hyperbolic E10

singularity. Moreover promoting the ai, bj and ck moduli to polynomials in an extra complex
variable ζ as in equations (7), one gets a CY3 with complex deformed E10 singularity. The
degrees of these polynomials define the rank of the gauge quiver group factors, in agreement
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with our classification theorem of N = 2 CFT(−)
4 s. At the end of this study, note that, as for

Â2 and more generally Âr , one may here also define a hierarchy of exceptional geometries; but
here these correspond just to the geometries associated with the so-called T(p,q,r) KM algebra.
Therefore, this kind of algebraic geometric hierarchies are classified by three positive integers
p, q and r and the corresponding surfaces are given by,

(yr t6−3r + xqt6−2q + zpt6−p + xyz) + a0t
6 +

p−1∑
s=1

cst
6−szs +

q−1∑
s=1

ast
6−2sxs +

r−1∑
s=1

bsy
r t6−3r = 0,

(31)

where as before (y, x, z, t) are in WP(3,2,1,1). From this relation, one may re-discover
known geometries obtained in earlier literature on 4D N = 2 quiver gauge theories.
Particular examples are those associated with finite Dr , finite Es and affine Es exceptional
geometries. These three classes of geometries correspond to those T(p,q,r) algebras with
positive determinant of the Cartan matrices as shown below,

det(K[T(p,q,r)]) = pq + pr + qr − pqr � 0. (32)

The remaining subset of T(p,q,r) algebras with det(K[T(p,q,r)]) < 0 corresponds effectively to
indefinite geometries; they are described by the rational number c = 1

p
+ 1

q
+ 1

r
< 1. The

complex projective surfaces with c � 1 are effectively those given by equation (32).

5. Conclusion

In this paper, we have shown on explicit examples that the beta function b
(q)

i of N = 2 quiver
gauge theories carries an extra index q = 1, 0,−1, equation (13). In the infrared limit, these
gauge theories flow to three different IR points and so one concludes that there exist in general
three sectors of N = 2 CFT4s embedded in type IIA superstring on local CY3s. These sectors
are in one to one with the three classes (finite, affine and indefinite) of simply laced KM
algebras. Moreover, as these supersymmetric QFT4s and their CFT4 IR limits are linked with
singularities of K3 fibred CY3, we have conjectured the existence of three kinds of local K3
surfaces classified by generalized Cartan matrices; one of them has indefinite singularities and
the two others are the well-known ones. To illustrate this claim, we have given two explicit
examples, namely singular surfaces having hyperbolic H4

3 and E10 degeneracies; also known as
the overextensions of affine A2 and affine E8 respectively. These are given by equations (26)
and (30). Among our results, we have also found that hyperbolic geometries may be deduced
from the affine category by varying the complex structure of the elliptic curve on C∗ (see
equations (28)). Extending this idea, we have shown that the above hyperbolic singularities
are, in fact, just leading elements of a hierarchy of a subset of indefinite singular K3 surfaces
obtained by iterative mechanism. For the case of affine A2 geometry (21) for instance, one gets
upon using equations (28), the following surface with deformed hyperbolic H 4

3 singularity,

H 4
3 : y2 + x3 + z6t−1 + xyz + [az6 + btz6 + ctxz4 + dyz3t] = 0. (33)

Repeating this procedure once more, one gets the following singular surface y2 + x3 + z6t−2 +
xyz + [a−1z

6t−1 + az6 + btz6 + ctxz4 + dyz3t] = 0. It is classified by the following indefinite
Lie algebra of minus generalized Cartan matrix given by,

K
(
H 4

3,1

) =


2 −1 0 0 0

−1 2 −1 0 0
0 −1 2 −1 −1
0 0 −1 2 −1
0 0 −1 −1 2

 , (34)
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where H 4
3,1 stands for the overextension of H 4

3 . Here also, one can write the data of this toric
manifold as in equations (22), (27). By successive iterations, one may further generalize this
result by constructing the following hierarchy of geometries based on affine Â2,

Â2,k : y2 + x3 + z6t−k + xyz +
k−1∑
s=1

a−s t
−sz6 + [az6 + btz6 + ctxz4

+ dyz3t] = 0, k = 1, . . . , (35)

where Â2,0 and Â2,1 stand respectively for affine Â2 and H 4
3 , and Â2,k with k > 1 refer

to the other hierarchical geometries. As for T(p,q,r) hierarchies we have studied here, see
equation (31), relations (35) have also poles in t. This is a signature of indefinite geometries.
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Appendix. Indefinite Lie algebras

Indefinite Lie algebras are still a mathematical open subject since their classification has not
yet been achieved. A subset of these indefinite algebras that is quite well understood includes
those known as hyperbolic Lie algebras [10, 12]. According to the Wanglai–Li classification,
there are 238 containing the following special list of simply laced ones:

H4
1, H4

2, H4
3, H5

1, H5
8, H6

1, H6
5, H6

6, H7
1,

H7
1, H8

1, H8
4, H8

5, H9
1, H9

4, H9
5, H10

1 , H10
4 .

(36)

For other applications of hyperbolic Lie algebras in string theory, see [13, 14] and references
therein.
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